Фауна стрекоз (Insecta: Odonata) Нижне-Свирского государственного природного заповедника и определительные признаки личинок некоторых видов

Выполнили:

- Д. Бекетов (9Б)
- В. Генкин (9Б)
- М. Заец (9Б)
- В. Начатой (10Б)
- П. Хорхордина (10Б)

Научный руководитель:

П. Н. Петров

Введение

На момент 2012 года отряд стрекозы (Insecta: Odonata) был оценён в 6042 ныне живущих вида (Zhang, 2013). Фауна России содержит 168 видов, среди которых нет ни одного достоверного эндемика. В прохладные периоды восточно-западная ориентация гор препятствует миграции теплолюбивых стрекоз и лишь только тихоокеанские прибрежные районы, свободные от горных барьеров сохраняют своё разнообразие. Из-за чего на территории России обитают преимущественно аллохтонные виды стрекоз (Malikova and Kosterin, 2019). Фауна стрекоз Восточной Европы и Кавказа оценивается в 120 видов (Askew, 2003).

Ранее, в конце XVIII столетия был создан первоначальный фаунистический перечень стрекоз для Северной Европы и для всей западной части России. В нём было указано пять видов стрекоз, собранных в районе нынешнего горда Рига, спустя несколько лет количество видов удвоилось (Fisher, 1788). Затем, в середине XIX века был составлен первый список для европейской части России и некоторых других районов, насчитывающий 51 вид стрекоз (Ульянин, 1869, цит. по: Белышев и др., 1989), при этом в Московской губернии было указано 34 вида (Кожевников, 1902, цит. по: Белышев и др., 1989). Чуть меньше в Прибалтике – 33 (Вгиttan, 1881, цит. по: Белышев и др., 1989). На территории более тёплой Украины было зафиксировано 60 видов стрекоз (Dziedzielewicz, 1902). Чуть позже на территории СССР было отмечено 76 видов (Белышев и др., 1989)

Территория современного Нижне-Свирского государственного природного заповедника находится в Олонецкой Губернии, на юго-восточной границе (рис. 1), там было зафиксировано всего лишь 19 видов стрекоз, что гораздо меньше, чем в остальных европейских регионах в то время (Колесов, 1930). Нижне-Свирский заповедник находится на юге Олонецкой губернии и его южная граница совпадает с границей между Олонецкой губернией и Санкт-Петербургской губернией, поэтому можно сказать, что ареал многих стрекоз Санкт-Петербургской губернии распространяется и на территорию Нижне-Свирского государственного заповедника.

Рис. 1. Карта Санкт-Петербургской и Олонецкой губернии 1913 года (по www.runivers.ru изменениями). Цветом показана Санкт-Петербургская губерния, на восточном побережье Ладожского озера находится Олонецкая губерния. 1 — Территория Нижне-Свирского государственного природного заповедника.

В конце XVIII века на территории нынешней Ленинградской области в ходе первых исследований фауны стрекоз были указаны 12 видов стрекоз, отнесённых к роду Libellula (Cederhjelm, 1798). Через полвека был создан перечень, указывающий на некоторые отдельные виды рода Leucorrhinia, а именно Sympetrum, Aeschna, Lestes и Calopteryx (Остен-Сакен, 1857, цит. по: Белышев и др., 1989). Чуть позже вышел более полный список (Полетаева, 1880, цит. по: Белышев и др., 1989), который содержал уже 10 родов и 29 видов стрекоз, отмеченных в Санкт-Петербургской губернии. В дальнейших исследованиях было отмечено еще 17 новых для губернии видов (Дьяконов, 1926). В итоге, к середине XIX века в современной Ленинградской области, границы которой близки к границам Олонецкой губернии, и в рядом находящихся территориях зарегистрировано примерно 46 видов.

В настоящее время Нижне-Свирский государственный природный заповедник находится в нижнем течении реки Свирь на ее правом берегу в Лодейнопольском районе Ленинградской области. Общая площадь заповедника составляет около 41 000 га. Для заповедника характерна подзона средней тайги (Столярская и др., 1996). На территории Нижне-Свирского заповедника умеренно-континентальный климат. Для заповедника характерна среднегодовая температура +3.5 °C; среднегодовая температура в январе –12 °C, в июле +17 °C. За год выпадает примерно 720 мм осадков. Максимальная высота над уровнем моря 31.5 м, поэтому около 46% территории заповедника заболочены, а оставшаяся площадь – это сосновый лес. (Столярская и др., 2004).

Во время исследований в округе реки Гумбарка Нижне-Свирского государственного природного заповедника был составлен ориентировочный перечень чешуекрылых, насчитывающий пять семейств и 31 вид стрекоз (Жабинская и др., 2019). Также во время исследований на территории Нижне-Свирского государственного природного заповедника были составлены разного рода списки жесткокрылых: водных жуков, содержащий 7 семейств и 59 видов, указано 17 семейств наземных жуков и сформирован аннотированный список для семейства Coccinellidae, насчитывающий 9 видов (Бахтеева и др., 2019; Неверов, Чуркина, 2018). В Нижне-Свирском государственном природном заповеднике к текущему моменту проводилось всего два исследования фауны стрекоз. В 2012 был составлен перечень их личинок, содержащий 8 семейств и 27 видов (Кудашкина, 2012). А в 2020 в аннотированный список вошло 8 семейств и 24 вида стрекоз (Начатой и др., 2020), что составило примерно 66.67% известных в Нижне-Свирсоком государственном заповеднике (Кудашкина, 2012), причём половина из них Соепаgrionidae и Libellulidae (восемь и шесть видов соответственно), а 11 видов не встречалось ранее. Среди этих видов в июне и начале июля в окрестностях реки Гумбарка преобладают имаго *Соепаgrion hastulatum*, в окрестностях реки Ситика — имаго *Руrrhosoma путрhula*, в мочажине Водный Стадион болота Гагарье — личинки *Leucorrhinia dubia* (Начатой и др., 2020).

Отряд Odonata делится на два подотряда (рис. 1): Anisoptera (разнокрылые), Zygoptera (равнокрылые). Раньше выделяли ещё и третий подотряд Anisozygoptera, но современные исследования показывают, что Anisozygoptera не является естественной группой и является парафилетической (Rehn, 2003; Lohman, 1996). На территории Восточной Европы обитают пять семейств Равнокрылых стрекоз: красотки (Calopterygidae), ложнокрасотки (Euphaeidae), лютки (Lestidae), стрелки (Coenagrionidae), а также плосконожки (Platycnemididae) (Bybee, 2005). В свою очередь Разнокрылые стрекозы Восточной Европы тоже

представлены пятью семействами: Aeshnidae, Gomphidae, Cordulegastridae, Corduliidae, Libellulidae (Скворцов, 2010).

Рис. 1. Слева представитель подотряда разнокрылые (Zygoptera) *Leucorrhinia rubicunda* (мужского пола), справа представитель подотряда равнокрылые (Anisoptera) *Calopteryx virgo* (по: Dijkstra, 2006).

Нас интересуют личинки стрекоз подотряда Anistoptera из семейства плоскобрюхи (Libellulidae), а точнее род *Leucorrhinia* и два вида этого рода: *L. dubia* и *L. rubicunda*.

Рис. 2. Личинка Leucorrhinia dubia (по: Flenner, Olne, 2006).

Одно из их главных отличий в том, что у L. dubia на пятом сегменте есть едва заметный дорсальный шип (рис. 2), а у L. rubicunda нет (по Харитонову, 1997). Однако нами было замечено, что у некоторых L. dubia дорсального шипа на пятом сегменте нет. Кроме того, у различных личинок L. dubia дорсальные шипы находятся на разных сегментах.

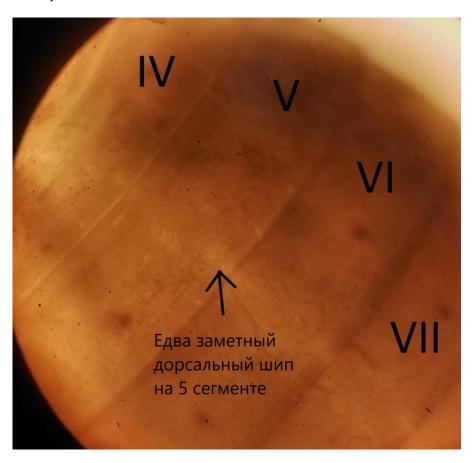


Рис. 3. Едва заметный дорсальный шип на пятом сегменте у личинки *L. dubia* под микроскопом. Римскими цифрами обозначены сегменты брюшка личинки.

Также в атласе-определителе Скворцова сказано, что у *L. dubia* латеральные шипы доходят до дистального края десятого сегмента, а у *L. rubicunda* латеральные шипы не доходят до дистального края десятого сегмента и у *L. dubia* на пятом и четвёртом сегменте проксимальный ряд шипиков слабо развит, при этом на четвёртом сегменте ряд шипиков почти не видим. А у *L. rubicunda* проксимальный ряд шипиков на пятом сегменте сильно развит, а на четвёртом не очень, но зато хорошо заметен. Мы заметили, что проксимальных шипиков нет ни у *L. rubicunda* ни у *L. dubia*, зато у них присутствует дистальные ряды шипиков. Скорее всего, Скворцов опечатался, это нужно выяснить. А по Харитонову, 1997 об этих признаках вообще не сказано. Также этих личинок отличить друг от друга невооружённым глазом крайне трудно.

В процессе предыдущей научной работы по фауне стрекоз Нижне-Свирского государственного заповедника было собрано и определено 315 экземпляров стрекоз, из которых 251 имаго и 64 личинки (Начатой и др., 2020). В этом году мы собрали новый материал, которому и посвящена эта научная работа.

Цель нашей работы: продолжить изучение фауны стрекоз Нижне-Свирского государственного заповедника и уточнить отличительные признаки видов *L. dubia* и *L. rubicunda*.

Задачи:

- 1. Дополнить фаунистический список стрекоз Нижне-Свирского заповедника по материалам личинок и имаго, собранным в 2020 г.
- 2. Уточнить отличительные признаки видов личинок *L. dubia* и *L. rubicunda*, используемые в определителях.

Материалы и методы

Материалы собраны в Удомельском районе Ленинградской области в Нижне-Свирском заповеднике в окрестностях ручья Ваемского, ручья Часовенского, реки Свирь, болота Гагарье (урочище Водный стадион), реки Пильчужни, озера Гагарье и болота Карасёво, с 21 июня 2020 года по пятое июля 2020 года учащимися Московской Школы на Юго-Западе № 1543. Также при составлении списка учитывали материалы, собранные в 2019 году учащимися Московской Школы на Юго-Западе № 1543 Ариной Адамович, Александром Горбачевским, работниками Школы Н.С.Глаголевой, Л.А.Абрамовой, Е.В.Елисеевой, студентами биологического факультета МГУ Марией Чуркиной и Иваном Дадыкиным, сотрудниками МГУ Е.П. Альтшулером и А.А. Антоновской, и сотрудницей ГБОУ МДЮЦ ЭКТ г. Москвы Д.А. Захарченко.

Рис.5 Карта Нижне-Свирского государственного природного заповедника (по www.zapoved.net с изменениями). Цифрами обозначены исследованные водоемы: 1 — река Ситика; 2 — река Гумбарка; 3 — болото Гагарье (мочажина Водный Стадион); 4 — окрестности реки Пильчужня; 5 — пятый ручей реки Свирь.

Для ловли имаго мы использовали энтомологический сачок для прицельного лова, а для ловли личинок мы использовали гидробиологический сачок. Стрекоз помещали в морилки (герметично закрывающиеся

стеклянные баночки объемом 100 мл с небольшим кубиком пенополиэтилена, пропитанным этилацетатом или 95% этиловым спиртом) не менее чем на 1 час. Личинок после выловления клали в спирт. Собранных имаго помещали в энтомологические матрасики (параллелепипед из бумаги, выстланный изнутри ватой), а собранных личинок помещали в эпиндорфы — пробирки с крышкой и коническим основанием. Имаго определяли по пособию «Стрекозы Восточной Европы и Кавказа: Атлас-определитель» (Скворцов, 2010), а личинок определяли по Харитонову (1997). Перед этим стрекоз, пролежавших на матрасике более трех дней, размачивали в закрытой банке, внутрь которой клали влажную ткань на дно и матрасик, так как без этой процедуры крылья стрекоз могут сломаться. У личинок (Leucorrhinia dubia и L. rubicunda) измеряли длину всего тела, ширину тела в самом широком месте, а также длину видимой части десятого сегмента и длину латеральных шипов на девятом сегменте; отмечали наличие ряда шипиков на проксимальном крае сегментов и дорсальных шипов при помощи бинокулярного микроскопа с окуляр-микрометром с точностью 0,1 мм

Рис. 6. Схема внешнего строения личинки Leucorrhinia dubia

Статистическую обработку данных проводили в программной среде R.

Результаты

Мы вычислили коэффициенты фаунистического сходства Жаккара и Сёренсена для различных водоёмов: залив Лахта, реки Ситика, Гумбарка и Пильчужня и ручей Ваемский.

	Жаккар							
		Лахта	Ситика	Гумбарк	Пильчужн	Ваемский	Водн. Стад. 2020 /2019. Жаккар	Водн. Стад. 2020 /2019. Сёренсен
	Лахта		0,06	0,11	0,50	0,36	0,42	0,59
	Ситика	0,11		0,10	0,33	0,06		
	Гумбарк	0,20	0,18		0,16	0,12		
	Пильчужн	0,67	0,50	0,27		0,42		
	Ваемский	0,53	0,12	0,21	0,59			

Рис. 7. Коэффициенты фаунистического сходства Жаккара и Сёренсена для различных водоёмов. Водн. стад. – мочажина Водный Стадион болота Гагарье

Мы добавили в список стрекоз Нижне-Свирского государственного природного заповедника четыре новых вида:

- 1. *Ischnura elegans* (Vander Linden, 1820). 24.6.2020, УЛ (1 ♂).
- 2. *Calopteryx virgo* (Linnaeus, 1758) 25.06.2020 ... (1 ♂); 26.06.2020, 2 км севернее PB (6 ♂♂ и 1 ♀);
- 3. *Gomphus vulgatissimus* (Linnaeus, 1758). 24.06.2020, УЛ (1 ♂); 26.06.2020, УЛ (1 ♂); 26.06.2020, РВ (2 ♂♂ и 1 ♀); 27.06.2020, ОГ (1 ♂); 28.06.2020, ВС (1 ♂); 29.06.2020, РП (1 ♂ и 1 ♀).
- 4. Leucorrhinia pectoralis (Charpentier, 1825). 24.06.2020, OΓ (1 δ).

Для видов *Leucorrhinia dubia* и *Leucorrhinia rubicunda* составлены мы построили диаграммы, сравнивающие длину тела (рис. 8), длину видимой части десятого сегмента (рис. 9), длину латеральных шипов на девятом сегменте (рис. 10), ширину тела в самом широком месте (рис. 11), сравнение длины латеральных шипов и длины видимой части десятого сегмента (рис. 12, 13).

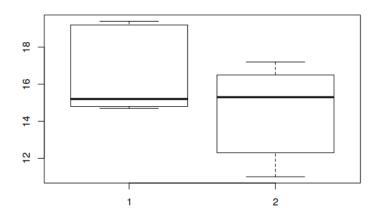


Рис. 8. Длина тела в мм. 1 – Leucorrhinia dubia, 2 – Leucorrhinia rubicunda.

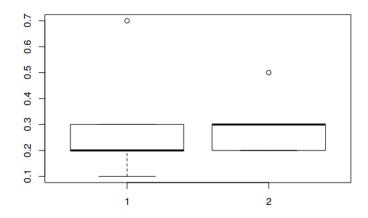


Рис. 9. Длина видимой части десятого сегмента в мм. 1 – $Leucorrhinia\ dubia$, 2 – $Leucorrhinia\ rubicunda$.

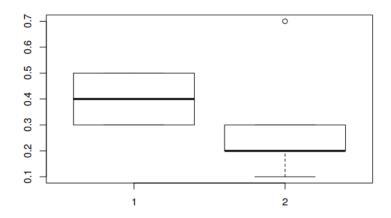


Рис. 10. Длина латеральных шипов на девятом сегменте в мм. 1 – $Leucorrhinia\ dubia,\ 2$ – $Leucorrhinia\ rubicunda.$

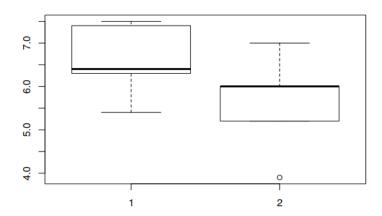


Рис. 11. Ширина тела в самом широком месте в мм. $1-Leucorrhinia\ dubia,\ 2-Leucorrhinia\ rubicunda.$

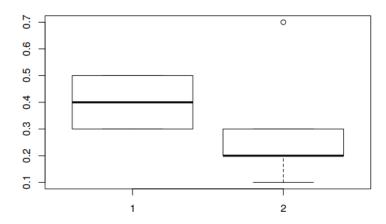


Рис. 12. 1 – Длина латеральных шипов на девятом сегменте; 2 – длина видимой части десятого сегмента у *Leucorrhinia dubia*.

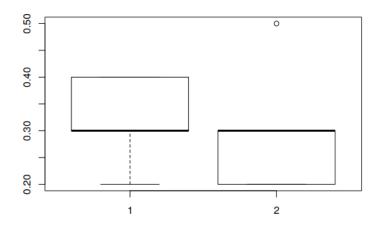


Рис. 13. 1 – Длина латеральных шипов на девятом сегменте; 2 – длина видимой части десятого сегмента у *Leucorrhinia rubicunda*.

Дело не в длине латеральных шипов и X сегмента, а в их расположении на теле, что может давать независимый от длины результат. Читай Скворцова: шипы доходят (или не доходят) до дистального края 10 сегмента.

Обсуждение

По итогам исследования фауны стрекоз в Нижне-свирском государственном природном заповеднике в июне и июле 2017-2020 годов составлен аннотированный список видов стрекоз Нижне-Свирского государственного природного заповедника, включающий 29 видов имаго и личнок стрекоз, четыре из которых были добавлены нами. Из восьми семейств, к которым принадлежат все отмеченные виды, наибольшим видовым разнообразием обладают семейства Coenagrionidae и Libellulidae, причем к первому из них относится большинство пойманных нами стрекоз.

Также можно утверждать, что в июне и июле 2020 года в изученных нами водоёмах видовой состав стрекоз довольно сильно различался, по сравнению с прошлыми годами. Из всех водоёмов сходством более или равным 50% обладали только река Пильчужня и залив Лахта (50% по Жаккару и 67% по Сёренсену,

расстояние между водоёмами 6 км), реки Ситика и Пильчужня (50% по Сёренсену, расстояние между водоёмами 3.2 км). Интересно, что данные водоёмы находятся на довольно большом расстоянии друг от друга, которое стрекозы редко преодолевают за одно поколение (за исключением отдельных особей и в некотором случае видов разнокрылых стрекоз). А водоёмы с меньшим расстоянием друг между другом, например, реки Гумбарка и Ситика, между которыми менее одного километра, схожи лишь на 10-18% (в зависимости от конкретного количественного коэффициента). Аналогичным примером являются реки Гумбарка и Пильчужня, расстояние между которыми чуть менее двух километров, однако схожесть по видовому богатству лишь 16-27%. Следовательно, можно сделать вывод, что схожесть в количестве видов между двумя водоёмами практически не зависит от расстояния между ними.

Интересно, что видовой состав мочажины Водный Стадион в 2019 и 2020 году схож лишь на 42-59%. Столь заметную разницу сложно объяснить на основании имеющихся данных, ведь исследования в 2019-2020 годах проводились в аналогичные даты (последняя неделя июня и первая неделя июля), схожей была и температура, которая зачастую превышала 20 °C. Однако в начале июля 2020 года заметно понизилась температура воздуха и увеличилось число осадков, чего нельзя сказать об аналогичном периоде в 2019 году. К сожалению, конкретных данных по изменению температуры и влажности у нас нет, поэтому однозначные выводы сделать сложно.

Также предварительно можно сказать, что длина латеральных шипов относительно длины видимой части десятого сегмента не является достоверным отличительным признаком видов *Leucorrhinia dubia* и *Leucorrhinia rubicunda*, так как у обоих видов довольно часто латеральные шипы не доходят или реже еле доходят до дистального края десятого сегмента, причем у *Leucorrhinia rubicunda* латеральные шипы чаще превышали десятый сегмент по длине, что вовсе противоречит определительному признаку.

Стоит отметить, что измерялись личинки всех возрастов, у которых длина латеральных шипов превышала 1 мм, причём личинки разных возрастов находились в примерно равном соотношении. Для особей, близких к последней линьке, признак довольно часто выполнялся, однако всё равно не всегда. Также никаких проксимальных шипиков обнаружено ни у одного вида не было, а дистальные в действительности присутствовали у большинства измеренных особей *Leucorrhinia rubicunda*.

Выводы

- 1. Аннотированный список видов стрекоз Нижне-Свирского государственного природного заповедника включает 8 семейств и 29 видов, из которых четыре были добавлены в ходе нашего исследования.
- 2. Отличительный признак видов Leucorrhinia dubia и Leucorrhinia rubicunda по длине латерального шипа на девятом сегменте относительно длины видимой части десятого сегмента не работает для личинок большинства возрастов кроме самых последних. Также у личинок Leucorrhinia rubicunda ряд мелких шипиков присутствует на проксимальном крае пятого сегмента.

Благодарности

Мы благодарны директору Нижне-Свирского государственного природного заповедника Максиму Александровичу Антипину и заместителю директора по науке Виктору Алексеевичу Ковалёву за оказанную помощь и поддержку. Мы также признательны студентам биологического факультета МГУ имени М.В. Ломоносова Марии Чуркиной и Ивану Дадыкину, учителям Московской школы на Юго-Западе № 1543 Надежде Сергеевне Глаголевой, Людмиле Андреевне Абрамовой и Екатерине Викторовне Елисеевой, ученикам Школы № 1543 Арине Адамович и Александру Горбачевскому, сотдрудникам МГУ имени М.В. Ломоносова Евгению Петровичу Альтшулеру и Анастасии Алексеевне Антоновской и сотруднице ГБОУ МДЮЦ ЭКТ г. Москвы Дарье Андреевне Захарченко за помощь в сборе материала.

Список литературы

- Бахтеева Е., Беляков В., Жирков Е., Пресняков Я., 2019. Новые данные по фауне жесткокрылых (Insecta, Coleoptera) Нижне-Свирского государственного природного заповедника: семейства водных жесткокрылых и некоторые другие семейства [Электронный ресурс]. Режим доступа: http://www.bioclass.ru/files/konf19/beetles.pdf. Дата обращения: 30.10.2020.
- Бельшев Б.Ф., Харитонов А.Ю., Борисов С.Н. и др., 1989. Фауна и экология стрекоз. М.: Наука. 207 с.
- Дьяконов А.М., 1926. Наши стрекозы. Экскурсионный определитель. М.: Госиздат. 76 с. Жабинская М., Пощилова А., Хорхордина П., 2019. Фауна булавоусых чешуекрылых (Insecta: Lepidoptera) окрестностей устья реки Гумбарка на территории Нижне-Свирского государственного природного заповедника и изменчивость размеров некоторых видов [Электронный ресурс]. Режим доступа: http://www.bioclass.ru/files/konf19/butterflies.pdf. Дата обновления: 30.10.2020.
- Жабинская М., Лощилова А., Хорхордина П., 2019. Фауна булавоусых чешуекрылых (Insecta: Lepidoptera) окрестностей устья реки Гумбарка на территории Нижне-Свирского государственного природного заповедника и изменчивость размеров некоторых видов [Электронный ресурс]. Режим доступа: http://www.bioclass.ru/files/konf19/butterflies.pdf. Дата обновления: 30.10.2020.
- Колесов В.Г., 1930. Экология Odonata Московской губернии. // Записки биологической станции общества любителей естествознания, антропологии и этнографии. В. 4. С. 59–128.
- Кудашкина Л.В.,2012. Видовой состав зообентоса залива Лахты. // Результаты многолетних наблюдений в природных комплексах Нижне-Свирского заповедника. Труды Нижне-Свирского государственного природного заповедника. В. 2. С. 106–107.
- Начатой В., Тищенко М., Хорхордина П., 2020. Фауна стрекоз (Insecta: Odonata) Нижне-Свирского государственного природного заповедника и Удомельского района Тверской области, а также изменчивость крылового четырехугольника у некоторых видов [Электронный ресурс]. Режим доступа: http://www.bioclass.ru/files/konf20/dragonfl.pdf. Дата обращения: 30.10.2020.

- *Неверов А., Чуркина М.*, 2018. Изучение фауны водных жесткокрылых Нижне-Свирского государственного заповедника [Электронный ресурс]. Режим доступа: http://www.bioclass.ru/files/konf18/traps.pdf. Дата обращения: 30.10.2020.
- Остен-Сакен Р.Р., 1857. Очерк современного познания энтомологической фауны окрестностей Санкт-Петербурга. М.: Журнал министерства народного просвещения. Е. 67. № 12. 50 с.
- Полетаева О., 1880. Петербургские одонаты. М.: Труды русского энтомологического общества. Т. 11. С. 97–119.
- Скворцов В.Э., 2010. Стрекозы Восточной Европы и Кавказа: Атлас-определитель. М.: КМК. 624 с.
- *Столярская М.В., Баранова Е.В., Тихонова О.А.*, 2004. Флора Нижне-Свирского заповедника. Вып. 1. Сосудистые растения. М.: РАН. 122 с.
- *Столярская М.В., Коваленко А.Е.*, 1996. Грибы Нижне-Свирского заповедника. В. 1. Макромицеты (преимущественно агарикоидные базидиомицеты). М.: РАН. 59 с.
- *Харитонов А.Ю.*, 1986. Отряд Odonata стрекозы // Определитель беспозвоночных России сопредельных территорий. Т. 3. Паукообразные и низшие насекомые под ред. *Нарчук Э.П, Туманов Д.В., Цалолихин С.Я.*. СПб.: Наука. С.222–246.
- Askew R.R., 2004. The Dragonflies of Europe. Harley Books. 308 p.
- Bruttan A., 1881. Zwei für das Gebiet neue Odonaten // Sitz.-Ber. Naturf. Ges. Dorpat. Bd. 5. N. 3. S. 379.
- Bybee S., 2005. Dragonflies and Damselflies (Odonata). Featured Creatures. University of Florida [Электронный ресурс]. Режим доступа: http://entnemdept.ufl.edu/creatures/misc/odonata/odonata.htm. Дата обращения: 30.10.2020.
- Cederhjelm I., 1798. Faunae Ingricae Prodromus, Exhibens Methodicam Descriptionem Inscectorum agriPetropolensis Praemissa Mammalium, Avium, Amphibiorum et Piscium Enumeratione[Электронный pecypc]. Режим доступа:https://books.google.ru/books?id=44qJt213kewC&pg=PA81&lpg=PA81&dq=cederhjelm+prodromus+faunae+ingricae&source. Дата обращения: 30.10.2020.
- Dijkstra K., 2006. Filde guide to the Dragonflies of Britain and Europe. Bloomsbary Publishing.
- Dziedzielewicz T., 1902. Wazki Galicyi I prryleglych krajow polsklich (Odonata Haliciae religuarumque provinciarum Poloniae) // Muzeum Dzieduszyckich. N. 5. S. 175.
- Flenner I., Onle K., 2006. Differences in exocuticle thickness in Leucorrhinia dubia (Odonata) larvae from habitats with and without fish. Halmstad University School of Business and Engineering [Электронный ресурс]. Режим доступа: http://www.divaportal.org/smash/get/diva2:237347/FULLTEXT01.pdf
- Lohmann H., 1996. Das phylogenetische system der Anisoptera (Odonata). Deutsche Entomologische Zeitschrift 106: 209–266.

- Malikova E.I., Kosterin O.E., 2019. Check-list of Odonata of the Russian Federation [Электронный ресурс].Режим доступа: http://pisum.bionet.nsc.ru/kosterin/pdf/malikova_kosterin_2019.pdf.Дата обращения 29.11.2020.
- Rehn AC., 2003. Phylogenetic analysis of higher-level relationships of Odonata. Systematic Entomology 28: 181–240.
- Zhang Z-Q., 2013. Phyllum Arthropoda, Animal Biodiversity. An Outline of Higher-level Classification and Survey of Taxonomic Richness [Электронный ресурс]. Режим доступа: https://biotaxa.org/Zootaxa/article/view/zootaxa.3703.1.6/53167. Дата обращения: 30.10.2020.

Приложения

Приложение 1

Аннотированный список видов стрекоз Нижне-Свирского государственного природного заповедника

Условные обозначения

ВС — болото Гагарье, Водный Стадион; УЛ — урочище Лахта; РСИ — река Ситика; РГ — окрестности устья реки Гумбарка; РП — река Пильчужня; РВ — ручей Ваемский; ОГ — озеро Гагарье; РСВ — пятый ручей реки Свирь; Л — личинка; \Im мужская/женская особь, если два символа, то особей больше одного.

Подотряд Zygoptera:

Семейство Coenagrionidae:

- 1. Ischnura elegans (Vander Linden, 1820). 24.6.2020, УЛ (1 👌).
- 2. *Coenagrion armatum* (Charpentier, 1840). 02.07.2019, РСИ (1 $\stackrel{?}{\circ}$).
- 3. Coenagrion hastulatum (Charpentier, 1825). Июль 2017, РГ (1 ♂); 12.06.2019, РГ (12 ♂♂); 17.06.2019, РГ (1 ♂); 18.06.2019, РГ (3 ♂♂); 19.06.2019, РГ (1 ♂); 24.06.2019, РГ (1 ♂); 25.06.2019, РГ (2 ♂♂); 01.07.2019, РСИ (26 ♂♂ и 4 ♀♀); 02.07.2019, РГ (30 ♂♂ и 1 ♀), РСИ (4 ♂♂); 04.07.2019, РСИ (10 ♂♂); 06.07.2019, РСИ (3 ♂♂); 22.06.2020; б. Карасёво (1 ♀ и 2 ♂♂); 23.06.2020, УЛ (2 ♀♀ и 1♂); 24.6.2020, ВС (2 ♂); 24.06.2020 УЛ (2 ♂); 26.06.2020, ВС (2 ♂♂); 27.06.2020, ОГ (1 ♀ и 1 ♂); 28.06.2020, ВС (1 ♂); 29.06.2020, река Зубец (1 ♀ и 1 ♂); 30.06.2020 УЛ (1 ♀); 02.07.2020, РП (8 ♂♂); 04.07.2020, РП (4 ♂♂).
- 4. Coenagrion johanssoni (Wallengren, 1894). 01.07.2019, BC (4 ♂♂ и 2 ♀♀); 24.06.2020, УЛ (1 ♂); 24.06.2020, BC (2 ♂♂); 26.06.2020, BC (8 ♂♂); 27.06.2020, OГ (1 ♀ и 2 ♂♂); 28.06.2020, BC (2 ♂♂);02.07.2020, PB (1 ♂); 02.07.2020, РП (1 ♂).
- 5. Coenagrion puella (Linnaeus, 1825). 02.07.2019, РСИ (1 ♀); 24.06.2020, УЛ (1 ♂); 29.06.2020, РП (1 ♂); 29.06.2020, река Зубец (1 ♂); 02.07.2020, РП (1 ♂).
- 6. Coenagrion pulchellum (Vander Linden, 1823). 24.06.2019, РГ (1 ♂); 25.06.2019, РГ (1 ♂); 26.06.2019, РГ (1 ♂); 30.06.2019, РСИ (9 ♂♂ и 1 ♀); 31.06.2019, РСИ (1 ♂); 02.07.2019, РСИ (1 ♂); 04.07.2019, РСИ (1 ♂); 06.07.2019, РГ (4 ♂♂); 24.06.2020, ВС (6 ♂♂); 26.06.2020, ВС (6 ♂♂ и 1 ♀); 28.06.2020, ВС (14 ♂♂); 02.07.2020, ВС (3 ♂♂); 02.07.2020, РП (2 ♂♂).

- 7. *Enallagma cyathigerum* Charpentier, 1840. 01.07.2019, BC (6 ♂♂); 06.07.2019, PCИ (1 ♂); 24.06.2020, BC (9 ♂♂); 26.06.2020, BC (12 ♂♂); 27.06.2020, OГ (5 ♂♂); 28.06.2020, BC (8 ♂♂); 02.07.2020, BC (1 ♂); 02.07.2020, PП (1 ♂).
- 8. *Erythromma najas* (Hansemann, 1823). 18.06.2019, окрестности р. Гумбарка (1 $\stackrel{>}{\circ}$); 24.06.2019, РГ (2 $\stackrel{>}{\circ}\stackrel{>}{\circ}$); 30.06.2019, РСИ (1 $\stackrel{>}{\to}$); 02.07.2019, РГ (1 $\stackrel{>}{\to}$).
- 9. *Pyrrhosoma nymphula* Charpentier, 1840. 30.06.2019, РСИ (35 ♂♂); 02.07.2019, РСИ (1 Л; 2 ♂♂); 04.07.2019, РСИ (8 ♂♂); 25.06.2020, ручей Часовенский (1 ♂); 26.06.2020, РВ (5 ♂♂); 29.06.2020, РП (4 ♂♂).

Семейство Calopterygidae:

- 10. Calopteryx splendens (Harris, 1782). 26.06.2019, PΓ (1 👌); 02.07.2019, PΓ (1 👌).
- 11. Calopteryx virgo (Linnaeus, 1758) 25.06.2020 ... (1 ♂); 26.06.2020, 2 км севернее РВ (6 ♂♂ и 1 ♀);

Семейство Lestidae:

- 12. Lestes sponsa Hansemann, 1823. 30.06.2019, РСИ (2 ♂♂); 01.07.2019, ВС (6 Л); 06.07.2019, РГ (1 Л).
- 13. Lestes virens Charpentier, 1825. 30.06.2019, РСИ (1 Л).

Семейство Platycnemididae:

14. Platycnemis pennipes (Pallas, 1771). 30.06.2019, РГ (1 Л); 01.07.2019, РГ (1 Л). Подотряд Anisoptera:

Семейство Aeshnidae:

- 15. Aeshna grandis (Linnaeus, 1758). 30.06.2019, РГ (5 Л); 01.07.2019, РГ (2 ♂♂ и 3 экзувия); 06.07.2019, РГ (3 личинки); 04.07.2020, ВС (1 ♂).
- 16. Aeshna juncea (Linnaeus, 1758). 30.06.2019, РСИ (1 Л); 01.07.2019, ВС (7 Л); 02.07.2019, ВС (1 экзувий); 04.07.2019, РГ (1 Л).
- *17. Aeshna subarctica* Walker, 1908. 02.07.2019, PCB (1 ♂).

Семейство Corduliidae:

- 18. Cordulia aenea (Linnaeus, 1758). Дата неизвестна, река Сегежа, (1 ♂); 25.06.2019, ВС (1 ♂); 29.06.2019, ВС (9 ♂♂); .07.2019, ВС (3 ♂♂); 02.07.2019, ВС (1 ♂ и 1 Л); 24.06.2020, УЛ (2 ♂♂); 25.06.2020, РВ (1 ♂); 25.06.2020 ... (3 ♀♀); 25.06.2020, РВ (1 ♂); 26.06.2020, УЛ (1 ♂); 26.06.2020, РВ (1 ♂); 26.06.2020, ВС (2 ♂♂); 27.06.2020, ОГ (2 ♂♂); 28.06.2020, ВС (1 ♂); 29.06.2020, РП (1 ♂);
- 19. Somatochlora metallica Vander Linden, 1825. 30.06.2019, РСИ (3 личинки); 29.06.2020, РП (1 ♂).

Семейство Gomphidae:

- 20. *Gomphus flavipes* (Linnaeus, 1758). 04.07.2019, РГ (1 Л).
- 21. Gomphus vulgatissimus (Linnaeus, 1758). 24.06.2020, УЛ (1 ♂); 26.06.2020, УЛ (1 ♂); 26.06.2020, РВ (2 ♂♂ и 1 ♀); 27.06.2020, ОГ (1 ♂); 28.06.2020, ВС (1 ♂); 29.06.2020, РП (1 ♂ и 1 ♀).

Семейство Libelluidae:

- 22. Leucorrhinia albifrons (Burmeister, 1839). 25.06.2019, BC (1 \circlearrowleft).
- 23. Leucorrhinia dubia (Vander Linden, 1825). июль 2018, РГ (1 ♀); 29.06.2019, ВС (2 ♂♂); 01.07.2019, ВС (5 ♂♂ и 24 личинки), РГ (1 Л); 02.07.2019, ВС (2 ♂♂ и 2 ♀♀); 26.06.2020, ВС (1 ♀); 27.06.2020, ОГ (1 ♂ и 1 ♀); 28.06.2020, ВС (2 ♂♂); 28.06.2020, ВС (5 ♂♂ и 1 ♀); 02.07.2020, ВС (2 ♂♂) 28.06.2020, ВС (1 ♂ и 2 ♀♀); 29.06.2020, ВС (2 ♀♀ и 2 ♂♂); 02.07.2020, ВС (2 ♂♂); 02.7.2020, РВ (6 ♂♂).
- 24. Leucorrhinia rubicunda (Linnaeus, 1758). 09.06.2019, РГ (1 ♂); 29.06.2019, ВС (1 ♂); 30.06.2019, РГ (1 Л); 01.07.2019, ВС (3 личинки); 24.06.2020, ВС (2 ♂♂); 28.06.2020, ВС (1 ♂).
- 25. Leucorrhinia pectoralis (Charpentier, 1825). 24.06.2020, OΓ (1 ♂);
- 26. Libellula quadrimaculata (Linnaeus, 1758). 07–30.06.2019, РГ (23 ♂♂); 03.07.2019, РГ (6 Л); 05.07.2019, РСВ (1 ♂); 22.06.2020, б. Карасёво (2 ♂♂); 23.06.2020, 2 км запапднее УЛ (1 ♂); 26.06.2020, УЛ (1 ♂); 26.06.2020 б. Карасёво (1 ♀); 27.06.2020, РВ (1 ♂); 27.06.2020, ОГ (1 ♀); 28.06.2020, ВС (1 ♂); 02.07.20, РП (5 ♂♂); 02.07.20, РП (4 ♂♂).
- 27. Sympetrum danae (Sulzer, 1776). 02.07.2019, РСИ (2 личинки).
- 28. Sympetrum flaveolum Linnaeus, 1758. 24.06.2019, PΓ (1 ♂); 29.06.2019, PΓ (1 ♂); .07.2019, PCИ (1 ♂).